Show simple item record

contributor authorSun, Fengpeng
contributor authorWalton, Daniel B.
contributor authorHall, Alex
date accessioned2017-06-09T17:10:17Z
date available2017-06-09T17:10:17Z
date copyright2015/06/01
date issued2015
identifier issn0894-8755
identifier otherams-80514.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223415
description abstractsing the hybrid downscaling technique developed in part I of this study, temperature changes relative to a baseline period (1981?2000) in the greater Los Angeles region are downscaled for two future time slices: midcentury (2041?60) and end of century (2081?2100). Two representative concentration pathways (RCPs) are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and uncertainty estimates. By the end of century under RCP8.5, a distinctly new regional climate state emerges: average temperatures will almost certainly be outside the interannual variability range seen in the baseline. Except for the highest elevations and a narrow swath very near the coast, land locations will likely see 60?90 additional extremely hot days per year, effectively adding a new season of extreme heat. In mountainous areas, a majority of the many baseline days with freezing nighttime temperatures will most likely not occur. According to a similarity metric that measures daily temperature variability and the climate change signal, the RCP8.5 end-of-century climate will most likely be only about 50% similar to the baseline. For midcentury under RCP2.6 and RCP8.5 and end of century under RCP2.6, these same measures also indicate a detectable though less significant climatic shift. Therefore, while measures reducing global emissions would not prevent climate change at this regional scale in the coming decades, their impact would be dramatic by the end of the twenty-first century.
publisherAmerican Meteorological Society
titleA Hybrid Dynamical–Statistical Downscaling Technique. Part II: End-of-Century Warming Projections Predict a New Climate State in the Los Angeles Region
typeJournal Paper
journal volume28
journal issue12
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-14-00197.1
journal fristpage4618
journal lastpage4636
treeJournal of Climate:;2015:;volume( 028 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record