Show simple item record

contributor authorHancock, Steven
contributor authorHuntley, Brian
contributor authorEllis, Richard
contributor authorBaxter, Robert
date accessioned2017-06-09T17:08:56Z
date available2017-06-09T17:08:56Z
date copyright2014/01/01
date issued2013
identifier issn0894-8755
identifier otherams-80148.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223008
description abstractnow exerts a strong influence on weather and climate. Accurate representation of snow processes within models is needed to ensure accurate predictions. Snow processes are known to be a weakness of land surface models (LSMs), and studies suggest that more complex snow physics is needed to avoid early melt. In this study the European Space Agency (ESA)?s Global Snow Monitoring for Climate Research (GlobSnow) snow water equivalent and NASA?s ?MOD10C1? snow cover products are used to assess the accuracy of snow processes within the Joint U.K. Land Environment Simulator (JULES). JULES is run ?offline? from a general circulation model and so is driven by meteorological reanalysis datasets: ?Princeton,? Water and Global Change?Global Precipitation Climatology Centre (WATCH?GPCC), and WATCH?Climatic Research Unit (CRU). This reveals that when the model achieves the correct peak accumulation, snow does not melt early. However, generally snow does melt early because peak accumulation is too low. Examination of the meteorological reanalysis data shows that not enough snow falls to achieve observed peak accumulations. Thus, the earlier studies? conclusions may be as a result of weaknesses in the driving data, rather than in model snow processes. These reanalysis products ?bias correct? precipitation using observed gauge data with an undercatch correction, overriding the benefit of any other datasets used in their creation. This paper argues that using gauge data to bias-correct reanalysis data is not appropriate for snow-affected regions during winter and can lead to confusion when evaluating model processes.
publisherAmerican Meteorological Society
titleBiases in Reanalysis Snowfall Found by Comparing the JULES Land Surface Model to GlobSnow
typeJournal Paper
journal volume27
journal issue2
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-13-00382.1
journal fristpage624
journal lastpage632
treeJournal of Climate:;2013:;volume( 027 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record