Show simple item record

contributor authorDelSole, Timothy
contributor authorYan, Xiaoqin
contributor authorDirmeyer, Paul A.
contributor authorFennessy, Mike
contributor authorAltshuler, Eric
date accessioned2017-06-09T17:08:09Z
date available2017-06-09T17:08:09Z
date copyright2014/01/01
date issued2013
identifier issn0894-8755
identifier otherams-79927.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222761
description abstracthe change in predictability of monthly mean temperature in a future climate is quantified based on the Community Climate System Model, version 4. According to this model, the North Atlantic overtakes the El Niño?Southern Oscillation (ENSO) as the dominant area of seasonal predictability by 2095. This change arises partly because ENSO becomes less variable and partly because the ENSO teleconnection pattern expands into the Atlantic. Over land, the largest change in temperature predictability occurs in the tropics and is predominantly due to a decrease in ENSO variability. The southern peninsula of Africa and northeast South America are predicted to experience significant drying in a future climate, which decreases the effective heat capacity and memory, and hence increases variance independently of ENSO changes. Extratropical land areas experience enhanced precipitation in a future climate, which decreases temperature variance by the same mechanism. Finally, the model predicts that surface temperatures near the poles will become more predictable and less variable in a future climate, primarily because melting sea ice exposes the underlying sea surface temperature, which is more predictable owing to its longer time scale. Some of these results, especially the change in ENSO variance, are known to be model dependent. This paper also advances the use of information theory to quantify predictability, including 1) deriving a quantitative relation between predictability of the first and second kinds; 2) showing how differences in predictability can be decomposed in two dramatically different ways, facilitating physical interpretation; and 3) proposing a sample estimate of mutual information whose significance can be tested using standard techniques.
publisherAmerican Meteorological Society
titleChanges in Seasonal Predictability due to Global Warming
typeJournal Paper
journal volume27
journal issue1
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-13-00026.1
journal fristpage300
journal lastpage311
treeJournal of Climate:;2013:;volume( 027 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record