Show simple item record

contributor authorBouttes, N.
contributor authorGregory, J. M.
contributor authorLowe, J. A.
date accessioned2017-06-09T17:06:38Z
date available2017-06-09T17:06:38Z
date copyright2013/04/01
date issued2012
identifier issn0894-8755
identifier otherams-79525.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222315
description abstracturing the last century, global climate has been warming, and projections indicate that such a warming is likely to continue over coming decades. Most of the extra heat is stored in the ocean, resulting in thermal expansion of seawater and global mean sea level rise. Previous studies have shown that after CO2 emissions cease or CO2 concentration is stabilized, global mean surface air temperature stabilizes or decreases slowly, but sea level continues to rise. Using idealized CO2 scenario simulations with a hierarchy of models including an AOGCM and a step-response model, the authors show how the evolution of thermal expansion can be interpreted in terms of the climate energy balance and the vertical profile of ocean warming. Whereas surface temperature depends on cumulative CO2 emissions, sea level rise due to thermal expansion depends on the time profile of emissions. Sea level rise is smaller for later emissions, implying that targets to limit sea level rise would need to refer to the rate of emissions, not only to the time integral. Thermal expansion is in principle reversible, but to halt or reverse it quickly requires the radiative forcing to be reduced substantially, which is possible on centennial time scales only by geoengineering. If it could be done, the results indicate that heat would leave the ocean more readily than it entered, but even if thermal expansion were returned to zero, the geographical pattern of sea level would be altered. Therefore, despite any aggressive CO2 mitigation, regional sea level change is inevitable.
publisherAmerican Meteorological Society
titleThe Reversibility of Sea Level Rise
typeJournal Paper
journal volume26
journal issue8
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-12-00285.1
journal fristpage2502
journal lastpage2513
treeJournal of Climate:;2012:;volume( 026 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record