Show simple item record

contributor authorCvijanovic, Ivana
contributor authorLangen, Peter L.
contributor authorKaas, Eigil
contributor authorDitlevsen, Peter D.
date accessioned2017-06-09T17:06:37Z
date available2017-06-09T17:06:37Z
date copyright2013/06/01
date issued2013
identifier issn0894-8755
identifier otherams-79519.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222308
description abstractn this study, southward intertropical convergence zone (ITCZ) shifts are investigated in three different scenarios: Northern Hemispheric cooling, Southern Hemispheric warming, and a bipolar seesaw-like forcing that combines the latter two. The experiments demonstrate the mutual effects that northern- and southern-high-latitude forcings exert on tropical precipitation, suggesting a time-scale-dependent dominance of northern versus southern forcings. In accordance with this, two-phase tropical precipitation shifts are suggested, involving a fast component dominated by the high-northern-latitude forcing and a slower component due to the southern-high-latitude forcing. The results may thus be useful for the future understanding and interpretation of high-resolution tropical paleoprecipitation proxies and their relation to high-latitude records (e.g., ice core data). The experiments also show that Southern Ocean warming has a global impact, affecting both the tropics and northern extratropics, as seen in a southward ITCZ shift and mid- and high-latitude North Atlantic surface temperature and wind changes. In terms of dynamical considerations, the tropical circulation response to high-latitude forcing is found to be nonlinear: the atmospheric heat transport and Hadley cell anomalies differ significantly (in magnitude) when comparing the warming and cooling experiments. These are related to different interhemispheric temperature gradients that are altered mainly by nonlinearities in water vapor response. Decomposition of the top-of-the-atmosphere flux response into atmospheric feedback effects shows the dominance of water vapor and cloud feedbacks in the tropics, with the longwave cloud feedback effect governing the overall cloud response.
publisherAmerican Meteorological Society
titleSouthward Intertropical Convergence Zone Shifts and Implications for an Atmospheric Bipolar Seesaw
typeJournal Paper
journal volume26
journal issue12
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-12-00279.1
journal fristpage4121
journal lastpage4137
treeJournal of Climate:;2013:;volume( 026 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record