Show simple item record

contributor authorNing, Liang
contributor authorMann, Michael E.
contributor authorCrane, Robert
contributor authorWagener, Thorsten
contributor authorNajjar, Raymond G.
contributor authorSingh, Riddhi
date accessioned2017-06-09T17:05:22Z
date available2017-06-09T17:05:22Z
date copyright2012/08/01
date issued2012
identifier issn0894-8755
identifier otherams-79211.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221966
description abstracthis study uses an empirical downscaling method based on self-organizing maps (SOMs) to produce high-resolution, downscaled precipitation projections over the state of Pennsylvania in the mid-Atlantic region of the United States for the future period 2046?65. To examine the sensitivity of precipitation change to the water vapor increase brought by global warming, the authors test the following two approaches to downscaling: one uses the specific humidity in the downscaling algorithm and the other does not. Application of the downscaling procedure to the general circulation model (GCM) projections reveals changes in the relative occupancy, but not the fundamental nature, of the simulated synoptic circulation states. Both downscaling approaches predict increases in annual and winter precipitation, consistent in sign with the ?raw? output from the GCMs but considerably smaller in magnitude. For summer precipitation, larger discrepancies are seen between raw and downscaled GCM projections, with a substantial dependence on the downscaling version used (downscaled precipitation changes employing specific humidity are smaller than those without it). Application of downscaling generally reduces the inter-GCM uncertainties, suggesting that some of the spread among models in the raw projected precipitation may result from differences in precipitation parameterization schemes rather than fundamentally different climate responses. Projected changes in the North Atlantic Oscillation (NAO) are found to be significantly related to changes in winter precipitation in the downscaled results, but not for the raw GCM results, suggesting that the downscaling more effectively captures the influence of climate dynamics on projected changes in winter precipitation.
publisherAmerican Meteorological Society
titleProbabilistic Projections of Anthropogenic Climate Change Impacts on Precipitation for the Mid-Atlantic Region of the United States
typeJournal Paper
journal volume25
journal issue15
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-11-00565.1
journal fristpage5273
journal lastpage5291
treeJournal of Climate:;2012:;volume( 025 ):;issue: 015
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record