Show simple item record

contributor authorSatoh, Masaki
contributor authorIga, Shin-ichi
contributor authorTomita, Hirofumi
contributor authorTsushima, Yoko
contributor authorNoda, Akira T.
date accessioned2017-06-09T17:04:11Z
date available2017-06-09T17:04:11Z
date copyright2012/03/01
date issued2011
identifier issn0894-8755
identifier otherams-78915.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221637
description abstractsing a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.
publisherAmerican Meteorological Society
titleResponse of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes
typeJournal Paper
journal volume25
journal issue6
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-11-00152.1
journal fristpage2178
journal lastpage2191
treeJournal of Climate:;2011:;volume( 025 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record