Show simple item record

contributor authorOreopoulos, Lazaros
contributor authorCahalan, Robert F.
date accessioned2017-06-09T17:01:17Z
date available2017-06-09T17:01:17Z
date copyright2005/12/01
date issued2005
identifier issn0894-8755
identifier otherams-78064.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220692
description abstractTwo full months (July 2003 and January 2004) of Moderate Resolution Imaging Spectroradiometer (MODIS) Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of vertically integrated cloud optical thickness (?cloud inhomogeneity?) at global scales. The monthly climatology of cloud inhomogeneity is expressed in terms of standard parameters, initially calculated for each day of the month at spatial scales of 1° ? 1° and subsequently averaged at monthly, zonal, and global scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for liquid and ice phases and separately over land and ocean. It is found that cloud inhomogeneity is overall weaker in summer than in winter. For liquid clouds, it is also consistently weaker for local morning than local afternoon and over land than ocean. Cloud inhomogeneity is comparable for liquid and ice clouds on a global scale, but with stronger spatial and temporal variations for the ice phase, and exhibits an average tendency to be weaker for near-overcast or overcast grid points of both phases. Depending on cloud phase, hemisphere, surface type, season, and time of day, hemispheric means of the inhomogeneity parameter ? (roughly the square of the ratio of optical thickness mean to standard deviation) have a wide range of ?1.7 to 4, while for the inhomogeneity parameter ? (the ratio of the logarithmic to linear mean) the range is from ?0.65 to 0.8. The results demonstrate that the MODIS Level-3 dataset is suitable for studying various aspects of cloud inhomogeneity and may prove invaluable for validating future cloud schemes in large-scale models capable of predicting subgrid variability.
publisherAmerican Meteorological Society
titleCloud Inhomogeneity from MODIS
typeJournal Paper
journal volume18
journal issue23
journal titleJournal of Climate
identifier doi10.1175/JCLI3591.1
journal fristpage5110
journal lastpage5124
treeJournal of Climate:;2005:;volume( 018 ):;issue: 023
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record