Show simple item record

contributor authorSkamarock, William C.
contributor authorPark, Sang-Hun
contributor authorKlemp, Joseph B.
contributor authorSnyder, Chris
date accessioned2017-06-09T16:57:37Z
date available2017-06-09T16:57:37Z
date copyright2014/11/01
date issued2014
identifier issn0022-4928
identifier otherams-77083.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219602
description abstractinetic energy (KE) spectra derived from global high-resolution atmospheric simulations from the Model for Prediction Across Scales (MPAS) are presented. The simulations are produced using quasi-uniform global Voronoi horizontal meshes with 3-, 7.5-, and 15-km mean cell spacings. KE spectra from the MPAS simulations compare well with observations and other simulations in the literature and possess the canonical KE spectra structure including a very-well-resolved shallow-sloped mesoscale region in the 3-km simulation. There is a peak in the vertical velocity variance at the model filter scale for all simulations, indicating the underresolved nature of updrafts even with the 3-km mesh. The KE spectra reveal that the MPAS configuration produces an effective model resolution (filter scale) of approximately 6?x. Comparison with other published model KE spectra highlight model filtering issues, specifically insufficient filtering that can lead to spectral blocking and the production of erroneous shallow-sloped mesoscale tails in the KE spectra. The mesoscale regions in the MPAS KE spectra are produced without use of kinetic energy backscatter, in contrast to other results reported in the literature. No substantive difference is found in KE spectra computed on constant height or constant pressure surfaces. Stratified turbulence is not resolved with the vertical resolution used in this study; hence, the results do not support recent conjecture that stratified turbulence explains the mesoscale portion of the KE spectrum.
publisherAmerican Meteorological Society
titleAtmospheric Kinetic Energy Spectra from Global High-Resolution Nonhydrostatic Simulations
typeJournal Paper
journal volume71
journal issue11
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-14-0114.1
journal fristpage4369
journal lastpage4381
treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record