Show simple item record

contributor authorLang, Stephen E.
contributor authorTao, Wei-Kuo
contributor authorChern, Jiun-Dar
contributor authorWu, Di
contributor authorLi, Xiaowen
date accessioned2017-06-09T16:56:54Z
date available2017-06-09T16:56:54Z
date copyright2014/10/01
date issued2014
identifier issn0022-4928
identifier otherams-76906.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219405
description abstracturrent cloud microphysical schemes used in cloud and mesoscale models range from simple one-moment to multimoment, multiclass to explicit bin schemes. This study details the benefits of adding a fourth ice class (frozen drops/hail) to an already improved single-moment three-class ice (cloud ice, snow, graupel) bulk microphysics scheme developed for the Goddard Cumulus Ensemble model. Besides the addition and modification of several hail processes from a bulk three-class hail scheme, further modifications were made to the three-ice processes, including allowing greater ice supersaturation and mitigating spurious evaporation/sublimation in the saturation adjustment scheme, allowing graupel/hail to transition to snow via vapor growth and hail to transition to graupel via riming, wet graupel to become hail, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved three-ice snow/graupel size-mapping schemes were adjusted to be more stable at higher mixing ratios and to increase the aggregation effect for snow. A snow density mapping was also added.The new scheme was applied to an intense continental squall line and a moderate, loosely organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and moderate cases and were superior to earlier three-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier three-ice versions. The bin-based rain evaporation correction affected the squall line more but overall the agreement among the reflectivity distributions was unchanged. The new scheme also improved the simulated surface rain-rate histograms.
publisherAmerican Meteorological Society
titleBenefits of a Fourth Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme
typeJournal Paper
journal volume71
journal issue10
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-13-0330.1
journal fristpage3583
journal lastpage3612
treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record