Show simple item record

contributor authorRauber, Robert M.
contributor authorWegman, Joseph
contributor authorPlummer, David M.
contributor authorRosenow, Andrew A.
contributor authorPeterson, Melissa
contributor authorMcFarquhar, Greg M.
contributor authorJewett, Brian F.
contributor authorLeon, David
contributor authorMarket, Patrick S.
contributor authorKnupp, Kevin R.
contributor authorKeeler, Jason M.
contributor authorBattaglia, Steven M.
date accessioned2017-06-09T16:56:43Z
date available2017-06-09T16:56:43Z
date copyright2014/05/01
date issued2013
identifier issn0022-4928
identifier otherams-76848.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219340
description abstracthis paper presents analyses of the finescale structure of convection in the comma head of two continental winter cyclones and a 16-storm climatology analyzing the distribution of lightning within the comma head. A case study of a deep cyclone is presented illustrating how upper-tropospheric dry air associated with the dry slot can intrude over moist Gulf air, creating two zones of precipitation within the comma head: a northern zone characterized by deep stratiform clouds topped by generating cells and a southern zone marked by elevated convection. Lightning, when it occurred, originated from the elevated convection. A second case study of a cutoff low is presented to examine the relationship between lightning flashes and wintertime convection. Updrafts within convective cells in both storms approached 6?8 m s?1, and convective available potential energy in the cell environment reached approximately 50?250 J kg?1. Radar measurements obtained in convective updraft regions showed enhanced spectral width within the temperature range from ?10° to ?20°C, while microphysical measurements showed the simultaneous presence of graupel, ice particles, and supercooled water at the same temperatures, together supporting noninductive charging as an important charging mechanism in these storms.A climatology of lightning flashes across the comma head of 16 winter cyclones shows that lightning flashes commonly occur on the southern side of the comma head where dry-slot air is more likely to overrun lower-level moist air. Over 90% of the cloud-to-ground flashes had negative polarity, suggesting the cells were not strongly sheared aloft. About 55% of the flashes were associated with cloud-to-ground flashes while 45% were in-cloud flashes.
publisherAmerican Meteorological Society
titleStability and Charging Characteristics of the Comma Head Region of Continental Winter Cyclones
typeJournal Paper
journal volume71
journal issue5
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-13-0253.1
journal fristpage1559
journal lastpage1582
treeJournal of the Atmospheric Sciences:;2013:;Volume( 071 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record