Show simple item record

contributor authorZhou, Wenyu
contributor authorHeld, Isaac M.
contributor authorGarner, Stephen T.
date accessioned2017-06-09T16:56:34Z
date available2017-06-09T16:56:34Z
date copyright2014/03/01
date issued2013
identifier issn0022-4928
identifier otherams-76803.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219291
description abstractotating radiative?convective equilibrium is studied by extracting the column physics of a mesoscale-resolution global atmospheric model that simulates realistic hurricane frequency statistics and then coupling it to rotating hydrostatic dynamics in doubly periodic domains. The parameter study helps in understanding the tropical cyclones simulated in the global model and also provides a reference point for analogous studies with cloud-resolving models.The authors first examine the sensitivity of the equilibrium achieved in a large square domain (2 ? 104 km on a side) to sea surface temperature, ambient rotation rate, and surface drag coefficient. In such a large domain, multiple tropical cyclones exist simultaneously. The size and intensity of these tropical cyclones are investigated.The variation of rotating radiative?convective equilibrium with domain size is also studied. As domain size increases, the equilibrium evolves through four regimes: a single tropical depression, an intermittent tropical cyclone with widely varying intensity, a single sustained storm, and finally multiple storms. As SST increases or ambient rotation rate f decreases, the sustained storm regime shifts toward larger domain size. The storm?s natural extent in large domains can be understood from this regime behavior.The radius of maximum surface wind, although only marginally resolved, increases with SST and increases with f for small f when the domain is large enough. These parameter dependencies can be modified or even reversed if the domain is smaller than the storm?s natural extent.
publisherAmerican Meteorological Society
titleParameter Study of Tropical Cyclones in Rotating Radiative–Convective Equilibrium with Column Physics and Resolution of a 25-km GCM
typeJournal Paper
journal volume71
journal issue3
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-13-0190.1
journal fristpage1058
journal lastpage1069
treeJournal of the Atmospheric Sciences:;2013:;Volume( 071 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record