Show simple item record

contributor authorde Lozar, Alberto
contributor authorMellado, Juan Pedro
date accessioned2017-06-09T16:56:01Z
date available2017-06-09T16:56:01Z
date copyright2013/08/01
date issued2013
identifier issn0022-4928
identifier otherams-76660.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219131
description abstractradiatively driven cloud-top mixing layer is investigated using direct numerical simulations. This configuration mimics the mixing process across the inversion that bounds the stratocumulus-topped boundary layer. The main focus of this paper is on small-scale turbulence. The finest resolution (7.4 cm) is about two orders of magnitude finer than that in cloud large-eddy simulations (LES). A one-dimensional horizontally averaged model is employed for the radiation. The results show that the definition of the inversion point with the mean buoyancy of ?b?(zi) = 0 leads to convective turbulent scalings in the cloud bulk consistent with the Deardorff theory. Three mechanisms contribute to the entrainment by cooling the inversion layer: a molecular flux, a turbulent flux, and the direct radiative cooling by the smoke inside the inversion layer. In the simulations the molecular flux is negligible, but the direct cooling reaches values comparable to the turbulent flux as the inversion layer thickens. The results suggest that the direct cooling might be overestimated in less-resolved models like LES, resulting in an excessive entrainment. The scaled turbulent flux is independent of the stratification for the range of Richardson numbers studied here. As suggested by earlier studies, the turbulent entrainment only occurs at the small scales and eddies larger than approximately four optical lengths (60 m in a typical stratocumulus cloud) perform little or no entrainment. Based on those results, a parameterization is proposed that accounts for a large part (50%?100%) of the entrainment velocities measured in the Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS II) campaign.
publisherAmerican Meteorological Society
titleDirect Numerical Simulations of a Smoke Cloud–Top Mixing Layer as a Model for Stratocumuli
typeJournal Paper
journal volume70
journal issue8
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-12-0333.1
journal fristpage2356
journal lastpage2375
treeJournal of the Atmospheric Sciences:;2013:;Volume( 070 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record