Show simple item record

contributor authorMilbrandt, J. A.
contributor authorYau, M. K.
date accessioned2017-06-09T16:53:16Z
date available2017-06-09T16:53:16Z
date copyright2006/12/01
date issued2006
identifier issn0022-4928
identifier otherams-76001.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218398
description abstractThis is the fourth in a series of papers exploring the effects of the number of predicted moments in bulk microphysics schemes. In Part III, the three-moment version of a new multimoment scheme was used to simulate a severe hailstorm. The model successfully reproduced many of the observed gross characteristics, including the reflectivity structure and the maximum hail sizes at the ground. In this paper, the authors compare a series of sensitivity experiments using various one- and two-moment versions of the scheme with the three-moment version to explore the effects of predicting additional moments on the simulated hydrometeor fields, precipitation, and storm dynamics. Six sensitivity runs were performed. They varied in their ability to reproduce the precipitation pattern, storm structure, and peak values of microphysical fields of the control simulation. The two-moment simulations, which used diagnostic relations to prescribe the relative dispersion parameter, α, closely reproduced the spatial pattern, quantity, and phase of the precipitation at the surface as well as the overall storm structure, propagation speed, and peak values of several hydrometeor fields. The two-moment simulations, which used fixed values of α, on the other hand, differed more from the control. The runs using one-moment versions of the scheme were considerably different from each other and were poor at reproducing the control simulation. The results suggest that there is a dramatic improvement in the simulation moving from one- to two-moment schemes. For the case studied, it was found that if maximum particle size is not of concern, a two-moment scheme with a diagnostic dispersion parameter can reproduce most of the important aspects in a hailstorm simulation with a three-moment scheme.
publisherAmerican Meteorological Society
titleA Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments
typeJournal Paper
journal volume63
journal issue12
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS3817.1
journal fristpage3137
journal lastpage3159
treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record