Show simple item record

contributor authorBacmeister, Julio T.
contributor authorSuarez, Max J.
contributor authorRobertson, Franklin R.
date accessioned2017-06-09T16:53:13Z
date available2017-06-09T16:53:13Z
date copyright2006/12/01
date issued2006
identifier issn0022-4928
identifier otherams-75976.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218371
description abstractSensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain reevaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model?s intertropical convergence zone (ITCZ). Weak reevaporation leads to the formation of a ?double ITCZ? during the northern warm season. The double ITCZ is accompanied by strong correlation between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model?s double ITCZ bias is reduced. At the same time, correlation between high-frequency (periods < 15 days) vertical motion in the PBL and precipitation is reduced. Experiments with modified physics indicate that evaporative cooling by rain near the PBL top weakens the coupling between precipitation-related heating and vertical motion in high-frequency motions. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the Tropics but did not reduce the model?s double ITCZ bias in all cases. Further analyses of mass and water vapor budgets, as well as vertical motion statistics, in the ITCZ complex, show that time-mean moisture convergence in the southern ITCZ is largely dominated by high-frequency modes, while in the northern ITCZ time-mean moisture convergence contains large contributions from slower modes. This may explain why the simulated southern ITCZ is more susceptible to parameterization changes that alter high-frequency coupling between moist heating and PBL convergence.
publisherAmerican Meteorological Society
titleRain Reevaporation, Boundary Layer–Convection Interactions, and Pacific Rainfall Patterns in an AGCM
typeJournal Paper
journal volume63
journal issue12
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS3791.1
journal fristpage3383
journal lastpage3403
treeJournal of the Atmospheric Sciences:;2006:;Volume( 063 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record