Show simple item record

contributor authorDeng, Yi
contributor authorMak, Mankin
date accessioned2017-06-09T16:52:04Z
date available2017-06-09T16:52:04Z
date copyright2005/04/01
date issued2005
identifier issn0022-4928
identifier otherams-75588.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217940
description abstractThe synoptic variability of a two-level quasigeostrophic flow in response to plausible changes in the forcing of a localized baroclinic jet is investigated in the context of the midwinter minimum of the Pacific storm track (MWM). The changes in the model forcing are introduced in terms of a reference potential vorticity field that is associated with plausible changes in the global baroclinicity, zonal variation of the baroclinicity, and horizontal deformation over the Pacific from early winter to midwinter conditions. It is found that the modal instability growth rate of perturbation in such a localized jet is significantly reduced in spite of an increase in the local baroclinicity. The dynamical nature of such an effect can be interpreted as a generalized barotropic governor effect on localized baroclinic instability. The existence of three instability regimes is established on the basis of energetics characteristics. The intensity of the nonlinear model storm track is reduced by about 30% in response to a change in the forcing condition from early to midwinter. The characteristics of the linear model storm track and nonlinear model storm track are compared. The overall results support a hypothesis that MWM could stem from a sufficiently large increase in the stabilizing influence of the local barotropic process in spite of a simultaneous increase in its local baroclinicity in the Pacific jet from early to midwinter.
publisherAmerican Meteorological Society
titleAn Idealized Model Study Relevant to the Dynamics of the Midwinter Minimum of the Pacific Storm Track
typeJournal Paper
journal volume62
journal issue4
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS3400.1
journal fristpage1209
journal lastpage1225
treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record