Show simple item record

contributor authorLuchetti, Nicholas T.
contributor authorSutton, Jessica R. P.
contributor authorWright, Ethan E.
contributor authorKruk, Michael C.
contributor authorMarra, John J.
date accessioned2017-06-09T16:46:12Z
date available2017-06-09T16:46:12Z
date copyright2016/12/01
date issued2016
identifier issn0003-0007
identifier otherams-73772.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215923
description abstracthere are more than 2,000 islands across Hawaii and the U.S.-Affiliated Pacific Islands (USAPI), where freshwater resources are heavily dependent upon rainfall. Many of the islands experience dramatic variations in precipitation during the different phases of the El Niño?Southern Oscillation (ENSO). Traditionally, forecasters in the region relied on ENSO climatologies based on spatially limited in situ data to inform their seasonal precipitation outlooks. To address this gap, a unique NOAA/NASA collaborative project updated the ENSO-based rainfall climatology for the Exclusive Economic Zones (EEZs) encompassing Hawaii and the USAPI using NOAA?s PERSIANN Climate Data Record (CDR). The PERSIANN-CDR provides a 30-yr record of global daily precipitation at 0.25° resolution (?750 km2 near the equator). This project took place over a 10- week NASA DEVELOP National Program term and resulted in a 478-page climatic reference atlas. This atlas is based on a 30-yr period from 1 January 1985 through 31 December 2014 and complements station data by offering an enhanced spatial representation of rainfall averages.Regional and EEZ-specific maps throughout the atlas illustrate the percent departure from average for each season based on the Oceanic Niño Index (ONI) for different ENSO phases. To facilitate intercomparisons across locations, this percentage-based climatology was provided to regional climatologists, forecasters, and outreach experts within the region. Anomalous wet and dry maps for each ENSO phase are used by the regional constituents to better understand precipitation patterns across their regions and to produce more accurate forecasts to inform adaptation, conservation, and mitigation options for drought and f looding events.
publisherAmerican Meteorological Society
titleWhen El Niño Rages: How Satellite Data Can Help Water-Stressed Islands
typeJournal Paper
journal volume97
journal issue12
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/BAMS-D-15-00219.1
journal fristpage2249
journal lastpage2255
treeBulletin of the American Meteorological Society:;2016:;volume( 097 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record