Show simple item record

contributor authorTurner, D. D.
contributor authorVogelmann, A. M.
contributor authorJohnson, K.
contributor authorMiller, M.
contributor authorAustin, R. T.
contributor authorBarnard, J. C.
contributor authorFlynn, C.
contributor authorLong, C.
contributor authorMcFarlane, S. A.
contributor authorCady-Pereira, K.
contributor authorClough, S. A.
contributor authorChiu, J. C.
contributor authorKhaiyer, M. M.
contributor authorLiljegren, J.
contributor authorLin, B.
contributor authorMinnis, P.
contributor authorMarshak, A.
contributor authorMatrosov, S. Y.
contributor authorMin, Q.
contributor authorO'Hirok, W.
contributor authorWang, Z.
contributor authorWiscombe, W.
date accessioned2017-06-09T16:43:19Z
date available2017-06-09T16:43:19Z
date copyright2007/02/01
date issued2007
identifier issn0003-0007
identifier otherams-72976.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215038
description abstractMany of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m?2; clouds with LWP less than this threshold will be referred to as ?thin?). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)
publisherAmerican Meteorological Society
titleThin Liquid Water Clouds: Their Importance and Our Challenge
typeJournal Paper
journal volume88
journal issue2
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/BAMS-88-2-177
journal fristpage177
journal lastpage190
treeBulletin of the American Meteorological Society:;2007:;volume( 088 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record