Show simple item record

contributor authorBagley, Justin E.
contributor authorDesai, Ankur R.
contributor authorWest, Paul C.
contributor authorFoley, Jonathan A.
date accessioned2017-06-09T16:39:12Z
date available2017-06-09T16:39:12Z
date copyright2011/10/01
date issued2011
identifier otherams-71615.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213527
description abstracthe impacts of changing land cover on the soil?vegetation?atmosphere system are numerous. With the fraction of land used for farming and grazing expected to increase, extensive alterations to land cover such as replacing forests with cropland will continue. Therefore, quantifying the impact of global land-cover scenarios on the biosphere is critical. The Predicting Ecosystem Goods and Services Using Scenarios boundary layer (PegBL) model is a new global soil?vegetation?boundary layer model designed to quantify these impacts and act as a complementary tool to computationally expensive general circulation models and large-eddy simulations. PegBL provides high spatial resolution and inexpensive first-order estimates of land-cover change on the surface energy balance and atmospheric boundary layer with limited input requirements. The model uses a climatological-data-driven land surface model that contains only the physics necessary to accurately reproduce observed seasonal cycles of fluxes and state variables for natural and agricultural ecosystems. A bulk boundary layer model was coupled to the land model to estimate the impacts of changing land cover on the lower atmosphere. The model most realistically simulated surface?atmosphere dynamics and impacts of land-cover change at tropical rain forest and northern boreal forest sites. Further, simple indices to measure the potential impact of land-cover change on boundary layer climate were defined and shown to be dependent on boundary layer dynamics and geographically similar to results from previous studies, which highlighted the impacts of land-cover change on the atmosphere in the tropics and boreal forest.
publisherAmerican Meteorological Society
titleA Simple, Minimal Parameter Model for Predicting the Influence of Changing Land Cover on the Land–Atmosphere System
typeJournal Paper
journal volume15
journal issue29
journal titleEarth Interactions
identifier doi10.1175/2011EI394.1
journal fristpage1
journal lastpage32
treeEarth Interactions:;2011:;volume( 015 ):;issue: 029
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record