Show simple item record

contributor authorKawashima, Masayuki
date accessioned2017-06-09T16:34:42Z
date available2017-06-09T16:34:42Z
date copyright2011/04/01
date issued2010
identifier issn0022-4928
identifier otherams-70326.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212095
description abstracthe effects of variations in low-level ambient vertical shear and horizontal shear on the alongfront variability of narrow cold frontal rainbands (NCFRs) that propagate into neutral and slightly unstable environments are investigated through a series of idealized cloud-resolving simulations.In cases initialized with slightly unstable sounding and weak ambient cross-frontal vertical shears, core-gap structures of precipitation along NCFRs occur that are associated with wavelike disturbances that derive their kinetic energy mainly from the mean local vertical shear and buoyancy. However, over a wide range of environmental conditions, core-gap structures of precipitation occur because of the development of a horizontal shear instability (HSI) wave along the NCFRs.The growth rate and amplitude of the HSI wave decrease significantly as the vertical shear of the ambient cross-front wind is reduced. These decreases are a consequence of the enhancement of the low-level local vertical shear immediately behind the leading edge. The strong local vertical shear acts to damp the vorticity edge wave on the cold air side of the shear zone, thereby suppressing the growth of the HSI wave through the interaction of the two vorticity edge waves. It is also noted that the initial wavelength of the HSI wave increases markedly with increasing horizontal shear. The local vertical shear around the leading edge is shown to damp long HSI waves more strongly than short waves, and the horizontal shear dependency of the wavelength is explained by the decrease in the magnitude of the vertical shear relative to that of the horizontal shear.
publisherAmerican Meteorological Society
titleNumerical Study of Horizontal Shear Instability Waves along Narrow Cold Frontal Rainbands
typeJournal Paper
journal volume68
journal issue4
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/2010JAS3599.1
journal fristpage878
journal lastpage903
treeJournal of the Atmospheric Sciences:;2010:;Volume( 068 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record