Show simple item record

contributor authorHan, Ying
contributor authorKhouider, Boualem
date accessioned2017-06-09T16:34:16Z
date available2017-06-09T16:34:16Z
date copyright2010/09/01
date issued2010
identifier issn0022-4928
identifier otherams-70182.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211935
description abstractA linear stability analysis, about a radiative?convective equilibrium in a sheared environment, on an equatorial beta plane, for a simple multicloud model for organized tropical convection is presented here. Both vertical/baroclinic and meridional/barotropic zonal wind shears are considered separately in a parameter regime for which the shear-free multicloud model exhibits synoptic-scale instability of Kelvin and n = 0 eastward inertio-gravity [eastward mixed Rossby?gravity (MRG)] waves only, with moderate growth rates. The maximum growth rates appear to increase significantly with the strength of the background wind shear, and new wave instabilities appear and/or disappear depending on the strength and type of the wind shear. It is found here that both high- and low-level vertical shears have a strong impact on the stability of convectively coupled waves (CCWs), consistent with the fact that the multicloud instability mechanism is controlled by both stratiform heating and low-level moisture and congestus heating. Typically, vertical shears with high-level easterly wind destabilize westward moving waves and stabilize eastward waves, whereas westerly winds aloft and on bottom tend to destabilize eastward moving and stabilize westward moving waves. In the mixed situation of high-level easterlies and low-level westerlies both eastward and westward waves are unstable, while in the case of high-level westerlies and low-level easterlies only eastward waves are unstable. In the presence of a barotropic/meridional shear, synoptic-scale convectively coupled westward MRG and Rossby waves emerge, when the shear strength is large enough, due essentially to pure shear instability of the dry dynamics. The meridional shear has also an important impact on the horizontal structure of the waves. Owing to the meridional shear, the Kelvin wave displays a nonzero meridional velocity that induces a significant contribution toward the horizontal convergence. The two-day waves adopt a crescentlike shape while the westward MRG, and somewhat the Rossby waves, become less trapped in the vicinity of the equator.
publisherAmerican Meteorological Society
titleConvectively Coupled Waves in a Sheared Environment
typeJournal Paper
journal volume67
journal issue9
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/2010JAS3335.1
journal fristpage2913
journal lastpage2942
treeJournal of the Atmospheric Sciences:;2010:;Volume( 067 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record