Show simple item record

contributor authorFast, Jerome D.
contributor authorGustafson, William I.
contributor authorChapman, Elaine G.
contributor authorEaster, Richard C.
contributor authorRishel, Jeremy P.
contributor authorZaveri, Rahul A.
contributor authorGrell, Georg A.
contributor authorBarth, Mary C.
date accessioned2017-06-09T16:33:03Z
date available2017-06-09T16:33:03Z
date copyright2011/03/01
date issued2010
identifier issn0003-0007
identifier otherams-69832.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211545
description abstractThe current paradigm of developing and testing new aerosol process modules is haphazard and slow. Aerosol modules are often tested for short simulation periods using limited data so that their overall performance over a wide range of meteorological conditions is not thoroughly evaluated. Although several model intercomparison studies quantify the differences among aerosol modules, the range of answers provides little insight on how to best improve aerosol predictions. Understanding the true impact of an aerosol process module is also complicated by the fact that other processes?such as emissions, meteorology, and chemistry?are often treated differently. To address this issue, the authors have developed an Aerosol Modeling Testbed (AMT) with the objective of providing a new approach to test and evaluate new aerosol process modules. The AMT consists of a more modular version of the Weather Research and Forecasting model (WRF) and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. Their approach systematically targets specific aerosol process modules, whereas all the other processes are treated the same. The suite of evaluation tools will streamline the process of quantifying model performance and eliminate redundant work performed among various scientists working on the same problem. Both the performance and computational expense will be quantified over time. The use of a test bed to foster collaborations among the aerosol scientific community is an important aspect of the AMT; consequently, the longterm development and use of the AMT needs to be guided by users.
publisherAmerican Meteorological Society
titleThe Aerosol Modeling Testbed: A Community Tool to Objectively Evaluate Aerosol Process Modules
typeJournal Paper
journal volume92
journal issue3
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/2010BAMS2868.1
journal fristpage343
journal lastpage360
treeBulletin of the American Meteorological Society:;2010:;volume( 092 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record