Show simple item record

contributor authorMaximenko, Nikolai
contributor authorNiiler, Peter
contributor authorCenturioni, Luca
contributor authorRio, Marie-Helene
contributor authorMelnichenko, Oleg
contributor authorChambers, Don
contributor authorZlotnicki, Victor
contributor authorGalperin, Boris
date accessioned2017-06-09T16:31:34Z
date available2017-06-09T16:31:34Z
date copyright2009/09/01
date issued2009
identifier issn0739-0572
identifier otherams-69413.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211080
description abstractPresented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth?s gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.5° horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites.
publisherAmerican Meteorological Society
titleMean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques
typeJournal Paper
journal volume26
journal issue9
journal titleJournal of Atmospheric and Oceanic Technology
identifier doi10.1175/2009JTECHO672.1
journal fristpage1910
journal lastpage1919
treeJournal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record