Show simple item record

contributor authorHoerling, Martin
contributor authorEischeid, Jon
contributor authorPerlwitz, Judith
date accessioned2017-06-09T16:30:03Z
date available2017-06-09T16:30:03Z
date copyright2010/04/01
date issued2009
identifier issn0894-8755
identifier otherams-68988.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210606
description abstractIn this study, the nature and causes for observed regional precipitation trends during 1977?2006 are diagnosed. It is found that major features of regional trends in annual precipitation during 1977?2006 are consistent with an atmospheric response to observed sea surface temperature (SST) variability. This includes drying over the eastern Pacific Ocean that extends into western portions of the Americas related to a cooling of eastern Pacific SSTs, and broad increases in rainfall over the tropical Eastern Hemisphere, including a Sahelian rainfall recovery and increased wetness over the Indo?West Pacific related to North Atlantic and Indo?West Pacific ocean warming. It is further determined that these relationships between SST and rainfall change are generally not symptomatic of human-induced emissions of greenhouse gases (GHGs) and aerosols. The intensity of regional trends simulated in climate models using observed time variability in greenhouse gases, tropospheric sulfate aerosol, and solar and volcanic aerosol forcing are appreciably weaker than those observed and also weaker than those simulated in atmospheric models using only observed SST forcing. The pattern of rainfall trends occurring in response to such external radiative forcing also departs significantly from observations, especially a simulated increase in rainfall over the tropical Pacific and southeastern Australia that are opposite in sign to the actual drying in these areas. Additional experiments illustrate that the discrepancy between observed and GHG-forced rainfall changes during 1977?2006 results mostly from the differences between observed and externally forced SST trends. Only weak rainfall sensitivity is found to occur in response to the uniform distribution of SST warming that is induced by GHG and aerosol forcing, whereas the particular pattern of the observed SST change that includes an increased SST contrast between the east Pacific and the Indian Ocean, and strong regional warming of the North Atlantic Ocean, was a key driver of regional rainfall trends. The results of this attribution study on the causes for 1977?2006 regional rainfall changes are used to discuss prediction challenges including the likelihood that recent rainfall trends might persist.
publisherAmerican Meteorological Society
titleRegional Precipitation Trends: Distinguishing Natural Variability from Anthropogenic Forcing
typeJournal Paper
journal volume23
journal issue8
journal titleJournal of Climate
identifier doi10.1175/2009JCLI3420.1
journal fristpage2131
journal lastpage2145
treeJournal of Climate:;2009:;volume( 023 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record