Show simple item record

contributor authorLegg, Sonya
contributor authorEzer, Tal
contributor authorJackson, Laura
contributor authorBriegleb, Bruce
contributor authorDanabasoglu, Gokhan
contributor authorLarge, William
contributor authorWu, Wanli
contributor authorChang, Yeon
contributor authorÖzgökmen, Tamay M.
contributor authorPeters, Hartmut
contributor authorXu, Xiaobiao
contributor authorChassignet, Eric P.
contributor authorGordon, Arnold L.
contributor authorGriffies, Stephen
contributor authorHallberg, Robert
contributor authorPrice, Jim
contributor authorRiemenschneider, Ulrike
contributor authorYang, Jiayan
date accessioned2017-06-09T16:22:03Z
date available2017-06-09T16:22:03Z
date copyright2009/05/01
date issued2009
identifier issn0003-0007
identifier otherams-66560.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207909
description abstractOceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
publisherAmerican Meteorological Society
titleImproving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team
typeJournal Paper
journal volume90
journal issue5
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/2008BAMS2667.1
journal fristpage657
journal lastpage670
treeBulletin of the American Meteorological Society:;2009:;volume( 090 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record