Show simple item record

contributor authorJavier, Julie Rose N.
contributor authorSmith, James A.
contributor authorMeierdiercks, Katherine L.
contributor authorBaeck, Mary Lynn
contributor authorMiller, Andrew J.
date accessioned2017-06-09T16:21:30Z
date available2017-06-09T16:21:30Z
date copyright2007/12/01
date issued2007
identifier issn0882-8156
identifier otherams-66403.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207736
description abstractThe utility of distributed hydrologic models in combination with high-resolution Weather Surveillance Radar-1988 Doppler (WSR-88D) rainfall estimates for flash flood forecasting in urban drainage basins is examined through model simulations of 10 flood events in the 14.3 km2 Dead Run watershed of Baltimore County, Maryland. The hydrologic model consists of a simple infiltration model and a geomorphological instantaneous unit hydrograph?based representation of hillslope and channel response. Analyses are based on high-resolution radar rainfall estimates from the Sterling, Virginia, WSR-88D and observations from a nested network of 6 stream gauges in the Dead Run watershed and a network of 17 rain gauge stations in Dead Run. For the three largest flood peaks in Dead Run, including the record flood on 7 July 2004, hydrologic model forecasts do not capture the pronounced attenuation of flood peaks. Hydraulic controls imposed by valley bottom constrictions associated with bridges and bridge abutments are a dominant element of the extreme flood response of small urban watersheds. Model analyses suggest that a major limitation on the accuracy of flash flood forecasting in urban watersheds is imposed by storm water management infrastructure. Model analyses also suggest that there is potential for improving model forecasts through the utilization of information on initial soil moisture storage. Errors in the rainfall field, especially those linked to bias correction, are the largest source of uncertainty in quantitative flash flood forecasting. Bias correction of radar rainfall estimates is an important element of flash flood forecasting systems.
publisherAmerican Meteorological Society
titleFlash Flood Forecasting for Small Urban Watersheds in the Baltimore Metropolitan Region
typeJournal Paper
journal volume22
journal issue6
journal titleWeather and Forecasting
identifier doi10.1175/2007WAF2006036.1
journal fristpage1331
journal lastpage1344
treeWeather and Forecasting:;2007:;volume( 022 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record