Show simple item record

contributor authorHátún, Hjálmar
contributor authorEriksen, Charles C.
contributor authorRhines, Peter B.
date accessioned2017-06-09T16:20:07Z
date available2017-06-09T16:20:07Z
date copyright2007/12/01
date issued2007
identifier issn0022-3670
identifier otherams-65965.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207248
description abstractIntense, buoyant anticyclonic eddies spawned from the west Greenland boundary current were observed with high-resolution autonomous Seaglider hydrography and satellite altimetry as they entered the Labrador Sea interior. Surveys of their internal structure establish the transport of both low-salinity water in the upper ocean and warm, saline Irminger water at depth. The observed eddies can contribute significantly to the rapid restratification of the Labrador Sea interior following wintertime deep convection. These eddies have saline cores between 200 and 1000 m, low-salinity cores above 200 m, and a velocity field that penetrates to at least 1000 m, with 0?1000-m average speeds exceeding 40 cm s?1. Their trajectory, together with earlier estimates of the gyre circulation, suggests why the observed region of deep convection is so small and does not occur where wintertime cooling by the atmosphere is most intense. The cyclostrophic surface velocity field of the anticylones from satellite altimetry matched well with in situ dynamic height baroclinic velocity calculations.
publisherAmerican Meteorological Society
titleBuoyant Eddies Entering the Labrador Sea Observed with Gliders and Altimetry
typeJournal Paper
journal volume37
journal issue12
journal titleJournal of Physical Oceanography
identifier doi10.1175/2007JPO3567.1
journal fristpage2838
journal lastpage2854
treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record