Show simple item record

contributor authorBoyd, John P.
contributor authorZhou, Cheng
date accessioned2017-06-09T16:18:42Z
date available2017-06-09T16:18:42Z
date copyright2008/02/01
date issued2008
identifier issn0022-4928
identifier otherams-65515.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206749
description abstractThe Kelvin wave is the gravest eigenmode of Laplace?s tidal equation. It is widely observed in both the ocean and the atmosphere. In the absence of mean currents, the Kelvin wave depends on two parameters: the zonal wavenumber s (always an integer) and Lamb?s parameter ?. An asymptotic approximation valid in the limit s2 + ? ? 1 is derived that generalizes the usual ?equatorial wave? limit that ? ? ∞ for fixed s. Just as shown for Rossby waves two decades ago, the width of the Kelvin wave is (? + s2)?1/4 rather than ??1/4 as in the classical equatorial beta-plane approximation.
publisherAmerican Meteorological Society
titleUniform Asymptotics for the Linear Kelvin Wave in Spherical Geometry
typeJournal Paper
journal volume65
journal issue2
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/2007JAS2356.1
journal fristpage655
journal lastpage660
treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record