Show simple item record

contributor authorIvanova, Irena T.
contributor authorLeighton, Henry G.
date accessioned2017-06-09T16:18:31Z
date available2017-06-09T16:18:31Z
date copyright2008/02/01
date issued2008
identifier issn0022-4928
identifier otherams-65448.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206674
description abstractHigh-resolution numerical simulations of the aerosol?cloud feedbacks are performed with a mesoscale model. The multimodal aerosol species, added to the model, and the cloud species were represented by two spectral moments. The aerosol sources include particle activation, solute transfer between drops due to collision and coalescence of drops, and particle regeneration. A summertime case was simulated consisting of a cold frontal cloud system and a postfrontal stratus. Experiments with both simple and mechanistic activation parameterization of aerosol and with one and two aerosol modes were performed. Verification was made of the stratus properties against measurements taken during the Radiation Aerosol and Cloud Experiment (RACE). The results demonstrate a significant sensitivity of the stratus and of the frontal system to the aerosol and a moderate impact on the particle spectrum of drop collision?coalescence. The stratus simulation with mechanistic activation and unimodal aerosol showed the best agreement of droplet concentration with the observations, and the simulations with mechanistic activation and a bimodal aerosol and with simple activation underestimated the droplet concentration. A similar high sensitivity was found for the frontal precipitation intensity. Drop collision?coalescence in the frontal system was found to have an impact on the particle mean radius whose magnitude amounted to 10% and 15% for one and multiple cloud cycles, respectively. This impact was also found to be highly variable in space. The modified particle spectrum, following activation in clouds, was found to increase droplet concentration.
publisherAmerican Meteorological Society
titleAerosol–Cloud Interactions in a Mesoscale Model. Part I: Sensitivity to Activation and Collision–Coalescence
typeJournal Paper
journal volume65
journal issue2
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/2007JAS2207.1
journal fristpage289
journal lastpage308
treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record