YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Continental Passive Microwave-Based Rainfall Estimation Algorithm: Application to the Amazon Basin

    Source: Journal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 007::page 1962
    Author:
    Biscaro, Thiago S.
    ,
    Morales, Carlos A.
    DOI: 10.1175/2007JAMC1744.1
    Publisher: American Meteorological Society
    Abstract: This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM?PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h?1 (PR) and ?0.157 mm h?1 (S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 (PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM?Large-Scale Biosphere?Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h?1. NESDIS1 overestimated for both wind regimes but presented the best westerly representation. NESDIS2, GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.
    • Download: (2.246Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Continental Passive Microwave-Based Rainfall Estimation Algorithm: Application to the Amazon Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206629
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorBiscaro, Thiago S.
    contributor authorMorales, Carlos A.
    date accessioned2017-06-09T16:18:22Z
    date available2017-06-09T16:18:22Z
    date copyright2008/07/01
    date issued2008
    identifier issn1558-8424
    identifier otherams-65407.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206629
    description abstractThis paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM?PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h?1 (PR) and ?0.157 mm h?1 (S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 (PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM?Large-Scale Biosphere?Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h?1. NESDIS1 overestimated for both wind regimes but presented the best westerly representation. NESDIS2, GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.
    publisherAmerican Meteorological Society
    titleContinental Passive Microwave-Based Rainfall Estimation Algorithm: Application to the Amazon Basin
    typeJournal Paper
    journal volume47
    journal issue7
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2007JAMC1744.1
    journal fristpage1962
    journal lastpage1981
    treeJournal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian