description abstract | Airborne Doppler radar is an important meteorological research tool for sampling the flow field of large convective systems (hurricanes, squall lines, fronts, etc.). In order to improve space resolution, the next generation of airborne Doppler radars must operate at fast scanning rates, i.e., use a very short dwell time that requires coding transmission. In this paper, three types of coding are envisioned: phase coding (unweighted or weighted Barker codes), linear frequency modulation (unweighted or weighted chirp), and a comb of four stepped frequencies. The radar transmission, reception, and processing were simulated; and the statistical accuracy of the mean Doppler velocity estimates and the mean power estimates obtained in the various cases were compared. The comb of four stepped frequencies emerges as the best technique among those considered for this application. | |