Show simple item record

contributor authorDowell, David C.
contributor authorBluestein, Howard B.
date accessioned2017-06-09T16:14:39Z
date available2017-06-09T16:14:39Z
date copyright2002/11/01
date issued2002
identifier issn0027-0644
identifier otherams-64025.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205094
description abstractOn 8 June 1995, scientists participating in the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) collected a unique dataset with the Electra Doppler Radar (ELDORA). The ELDORA observations document the sequential life cycles of storm-scale circulations associated with three large tornadoes in a supercell thunderstorm near McLean, Texas. A qualitative description of the evolution of the storm was provided in Part I of this paper. During the first stage of development of each storm-scale circulation, interaction of the updraft with the environmental low-level horizontal vorticity produced a vorticity column that increased in intensity with height. As the vortex matured, vorticity increased greatly at low levels (i.e., below 2 km AGL) and exceeded that aloft. Each tornadic vortex was located near the rear side of the updraft, where the surrounding low-level horizontal vorticity was modified locally, most likely by weak baroclinity within the storm. Tilting of low-level horizontal vorticity into the vertical, followed by stretching of the vertical vorticity, occurred in the air parcels that entered the rear portion of the main storm updraft from its left (as viewed in the direction of storm motion). Although the region of tilting was near the interface of the main updraft and that portion of the downdraft to the left of the updraft, there is no direct evidence in the observations (above 500 m AGL) of generation of cyclonic vertical vorticity by tilting in the downdraft itself. For this storm, the cyclic tornadogenesis process was associated with a mismatch between the horizontal motion of successive tornadoes and the horizontal velocity of the main storm-scale updraft and downdraft. Low-level updraft-relative flow seemed to be the most important factor in determining tornado motion.
publisherAmerican Meteorological Society
titleThe 8 June 1995 McLean, Texas, Storm. Part II: Cyclic Tornado Formation, Maintenance, and Dissipation
typeJournal Paper
journal volume130
journal issue11
journal titleMonthly Weather Review
identifier doi10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2
journal fristpage2649
journal lastpage2670
treeMonthly Weather Review:;2002:;volume( 130 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record