Show simple item record

contributor authorMiller, Robert N.
contributor authorEhret, Laura L.
date accessioned2017-06-09T16:14:36Z
date available2017-06-09T16:14:36Z
date copyright2002/09/01
date issued2002
identifier issn0027-0644
identifier otherams-64007.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205074
description abstractIn this work the performance of ensembles generated by commonly used methods in a nonlinear system with multiple attractors is examined. The model used here is a spectral truncation of a barotropic quasigeostrophic channel model. The system studied here has 44 state variables, great enough to exhibit the problems associated with high state dimension, but small enough so that experiments with very large ensembles are practical, and relevant probability density functions (PDFs) can be evaluated explicitly. The attracting sets include two stable limit cycles. To begin, the basins of attraction of two known stable limit cycles are characterized. Large ensembles are then used to calculate the evolution of initially Gaussian PDFs with a range of initial covariances. If the initial covariances are small, the PDF remains essentially unimodal, and the probability that a point drawn from the initial PDF lies in a different basin of attraction from the mean of that PDF is small. If the initial covariances are so large that there is significant probability that a given point in the initial ensemble does not lie in the same basin of attraction as the mean, the initial Gaussian PDF will evolve into a bimodal PDF. In this case, graphical representation of the PDF appears to split into two distinct regions of relatively high probability. The ability of smaller ensembles drawn from spaces spanned by singular vectors and by bred vectors to capture this splitting behavior is then investigated, with the objective here being to see how well they capture multimodality in a highly nonlinear system. The performance of similarly small random ensembles drawn without dynamical constraints is also evaluated. In this application, small ensembles chosen from subspaces of singular vectors performed well, their weakest performance being for an ensemble with relatively large initial variance for which the Gaussian character of the initial PDF remained intact. This was the best case for the bred vectors because of their tendency to align tangent to the attractor, but the bred vectors were at a disadvantage in detection of the tendency of an initially Gaussian PDF to evolve into a bimodal one, as were the unconstrained ensembles.
publisherAmerican Meteorological Society
titleEnsemble Generation for Models of Multimodal Systems
typeJournal Paper
journal volume130
journal issue9
journal titleMonthly Weather Review
identifier doi10.1175/1520-0493(2002)130<2313:EGFMOM>2.0.CO;2
journal fristpage2313
journal lastpage2333
treeMonthly Weather Review:;2002:;volume( 130 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record