Show simple item record

contributor authorChang, Edmund K. M.
contributor authorLee, Sukyoung
contributor authorSwanson, Kyle L.
date accessioned2017-06-09T16:02:35Z
date available2017-06-09T16:02:35Z
date copyright2002/08/01
date issued2002
identifier issn0894-8755
identifier otherams-5953.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4200100
description abstractThis paper reviews the current state of observational, theoretical, and modeling knowledge of the midlatitude storm tracks of the Northern Hemisphere cool season. Observed storm track structures and variations form the first part of the review. The climatological storm track structure is described, and the seasonal, interannual, and interdecadal storm track variations are discussed. In particular, the observation that the Pacific storm track exhibits a marked minimum during midwinter when the background baroclinicity is strongest, and a new finding that storm tracks exhibit notable variations in their intensity on decadal timescales, are highlighted as challenges that any comprehensive storm track theory or model has to be able to address. Physical processes important to storm track dynamics make up the second part of the review. The roles played by baroclinic processes, linear instability, downstream development, barotropic modulation, and diabatic heating are discussed. Understanding of these processes forms the core of our current theoretical knowledge of storm track dynamics, and provides a context within which both observational and modeling results can be interpreted. The eddy energy budget is presented to show that all of these processes are important in the maintenance of the storm tracks. The final part of the review deals with the ability to model storm tracks. The success as well as remaining problems in idealized storm track modeling, which is based on a linearized dynamical system, are discussed. Perhaps on a more pragmatic side, it is pointed out that while the current generation of atmospheric general circulation models faithfully reproduce the climatological storm track structure, and to a certain extent, the seasonal and ENSO-related interannual variations of storm tracks, in-depth comparisons between observed and modeled storm track variations are still lacking.
publisherAmerican Meteorological Society
titleStorm Track Dynamics
typeJournal Paper
journal volume15
journal issue16
journal titleJournal of Climate
identifier doi10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2
journal fristpage2163
journal lastpage2183
treeJournal of Climate:;2002:;volume( 015 ):;issue: 016
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record