Show simple item record

contributor authorTrenberth, Kevin E.
contributor authorCaron, Julie M.
date accessioned2017-06-09T16:00:32Z
date available2017-06-09T16:00:32Z
date copyright2001/08/01
date issued2001
identifier issn0894-8755
identifier otherams-5865.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4199122
description abstractNew estimates of the poleward energy transport based on atmospheric reanalyses from the National Centers for Environmental Prediction?National Center for Atmospheric Research (NCEP?NCAR) and the European Centre for Medium-Range Weather Forecasts are presented. The analysis focuses on the period from February 1985 to April 1989 when there are reliable top-of-the-atmosphere radiation data from the Earth Radiation Budget Experiment. Annual mean poleward transports of atmospheric energy peak at 5.0 ± 0.14 PW at 43°N and with similar values near 40°S, which is much larger than previous estimates. The standard deviation of annual and zonal mean variability from 1979 to 1998 is mostly less than 0.15 PW (1%?3%). Results are evaluated by computing the implied ocean heat transports, utilizing physical constraints, and comparing them with direct oceanographic estimates and those from successful stable coupled climate models that have been run without artificial flux adjustments for several centuries. Reasonable agreement among ocean transports is obtained with the disparate methods when the results from NCEP?NCAR reanalyses based upon residually derived (not model-generated) methods are used, and this suggests that improvements have occurred and convergence is to the true values. Atmospheric transports adjusted for spurious subterranean transports over land areas are inferred and show that poleward ocean heat transports are dominant only between 0° and 17°N. At 35° latitude, at which the peak total poleward transport in each hemisphere occurs, the atmospheric transport accounts for 78% of the total in the Northern Hemisphere and 92% in the Southern Hemisphere. In general, a much greater portion of the required poleward transport is contributed by the atmosphere than the ocean, as compared with previous estimates.
publisherAmerican Meteorological Society
titleEstimates of Meridional Atmosphere and Ocean Heat Transports
typeJournal Paper
journal volume14
journal issue16
journal titleJournal of Climate
identifier doi10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
journal fristpage3433
journal lastpage3443
treeJournal of Climate:;2001:;volume( 014 ):;issue: 016
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record