Show simple item record

contributor authorBattisti, David S.
contributor authorSarachik, E. S.
contributor authorHirst, A. C.
date accessioned2017-06-09T15:46:28Z
date available2017-06-09T15:46:28Z
date copyright1999/10/01
date issued1999
identifier issn0894-8755
identifier otherams-5310.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4192957
description abstractThe authors present a new model of the tropical surface circulation, forced by changes in sensible heat and evaporative flux anomalies that are associated with prescribed sea surface temperature anomalies. The model is similar to the Lindzen and Nigam (LN) boundary layer model, also driven by the above flux anomalies; but here, since the boundary layer is assumed well mixed and capped by an inversion, the model reduces to a two-layer, reduced-gravity system. Furthermore, the rate of exchange of mass across the boundary layer?free atmosphere interface is dependent on the moisture budget in the boundary layer. When moist convection is diagnosed to occur, detrainment operates on the timescale associated with the life cycle of deep convection, approximately eight hours. Otherwise, the detrainment is assumed to be associated with the mixing out of the stable tropical boundary layer, which has a timescale of about one day. The model provides a diagnostic estimate of the anomalies in precipitation. However, it is assumed that the latent heat is released above the boundary layer, and it drives a circulation that does not impact the boundary layer. The authors discuss the derivations of the Gill?Zebiak (GZ) and Lindzen?Nigam models and highlight some apparent inconsistencies between their derivation and the values of several of the parameters that are required for these models to achieve realistic solutions for the circulations. Then, the new reduced-gravity boundary model equations are rewritten in the form of the GZ and LN models. Using realistic values for the parameters in the new model geometry, it is shown that the constants combine in the rewritten equations to produce the physically doubtful constants in the GZ and LN models, hence, the reason for the apparent success of these models.
publisherAmerican Meteorological Society
titleA Consistent Model for the Large-Scale Steady Surface AtmosphericCirculation in the Tropics
typeJournal Paper
journal volume12
journal issue10
journal titleJournal of Climate
identifier doi10.1175/1520-0442(1999)012<2956:ACMFTL>2.0.CO;2
journal fristpage2956
journal lastpage2964
treeJournal of Climate:;1999:;volume( 012 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record