Show simple item record

contributor authorKirtman, Ben P.
date accessioned2017-06-09T15:35:47Z
date available2017-06-09T15:35:47Z
date copyright1997/07/01
date issued1997
identifier issn0894-8755
identifier otherams-4811.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4187412
description abstractTropical ocean wave dynamics associated with the El Niño?Southern Oscillation cycle in a coupled model are examined. The ocean?atmosphere model consists of statistical atmosphere coupled to a simple reduced gravity model of the tropical Pacific Ocean. The statistical atmosphere is simple enough to allow for the structure and position of the wind stress anomalies to be externally specified. In a control simulation, where the structure of the wind stress anomaly is determined from observations, the model produces a regular 5-yr oscillation. This simulation is consistent with the so-called delayed oscillator theory in that subsurface wave dynamics determine the slow timescale of the oscillation and surface-layer processes are found to be of secondary importance. Kelvin and Rossby wave propagation is detected along the equator, with periods considerably shorter than the simulated oscillation period. The way in which these relatively fast waves are related to the simulated 5-yr oscillation is discussed. In order to understand the mechanism responsible for the 5-yr period in the control simulation, two sets of sensitivity experiments were conducted. The first set of experiments focused on how the meridional structure of the wind stress anomaly influences the model ENSO period. Relatively broad (narrow) meridional structures lead to relatively long (short) periods. While the gravest Rossby wave appears to be important in these simulations, it is found that the maximum variability in the thermocline is associated with off-equatorial Rossby waves (i.e., Rossby waves that have a maximum amplitude beyond ±7° of the equator). The second set of sensitivity experiments was designed to examine how these off-equatorial Rossby waves influence the ENSO cycle. Without the effects of the off-equatorial Rossby waves at the western boundary, the model produces a 2-yr oscillation regardless of the meridional structure of the wind stress anomaly. The mechanism by which these off-equatorial Rossby waves influence the ENSO period is described. Based on these experiments, it is shown that the reflection of the gravest Rossby wave off the western boundary is required to produce oscillatory behavior in the model, but the period of the oscillation is determined by the off-equatorial Rossby waves and the latitude at which they are forced.
publisherAmerican Meteorological Society
titleOceanic Rossby Wave Dynamics and the ENSO Period in a Coupled Model
typeJournal Paper
journal volume10
journal issue7
journal titleJournal of Climate
identifier doi10.1175/1520-0442(1997)010<1690:ORWDAT>2.0.CO;2
journal fristpage1690
journal lastpage1704
treeJournal of Climate:;1997:;volume( 010 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record