Show simple item record

contributor authorHouston, Samuel H.
contributor authorShaffer, Wilson A.
contributor authorPowell, Mark D.
contributor authorChen, Jye
date accessioned2017-06-09T14:57:43Z
date available2017-06-09T14:57:43Z
date copyright1999/10/01
date issued1999
identifier issn0882-8156
identifier otherams-3068.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4168045
description abstractSurface wind observations analyzed by the Hurricane Research Division (HRD) were compared to those computed by the parametric wind model used in the National Weather Service Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model?s storm surge computations for seven cases in five recent hurricanes. In six cases, the differences between the SLOSH and HRD surface peak wind speeds were 6% or less, but in one case (Hurricane Emily of 1993) the SLOSH computed peak wind speeds were 15% less than the HRD. In all seven cases, statistics for the modeled and analyzed wind fields showed that for the region of strongest winds, the mean SLOSH wind speed was 14% greater than that of the HRD and the mean inflow angle for SLOSH was 19° less than that of the HRD. The radii beyond the region of strongest winds in the seven cases had mean wind speed and inflow angle differences that were very small. The SLOSH computed peak storm surges usually compared closely to the observed values of storm surge in the region of the maximum wind speeds, except Hurricane Emily where SLOSH underestimated the peak surge. HRD?s observation-based wind fields were input to SLOSH for storm surge hindcasts of Hurricanes Emily and Opal (1995). In Opal, the HRD input produced nearly the same computed storm surges as those computed from the SLOSH parametric wind model, and the calculated surge was insensitive to perturbations in the HRD wind field. For Emily, observation-based winds produced a computed storm surge that was closer to the peak observed surge, confirming that the computed surge in Pamlico Sound was sensitive to atmospheric forcing. Using real-time, observation-based winds in SLOSH would likely improve storm surge computations in landfalling hurricanes affected by synoptic and mesoscale factors that are not accounted for in parametric models (e.g., a strongly sheared environment, convective asymmetries, and stably stratified boundary layers). An accurate diagnosis of storm surge flooding, based on the actual track and wind fields could be supplied to emergency management agencies, government officials, and utilities to help with damage assessment and recovery efforts.
publisherAmerican Meteorological Society
titleComparisons of HRD and SLOSH Surface Wind Fields in Hurricanes: Implications for Storm Surge Modeling
typeJournal Paper
journal volume14
journal issue5
journal titleWeather and Forecasting
identifier doi10.1175/1520-0434(1999)014<0671:COHASS>2.0.CO;2
journal fristpage671
journal lastpage686
treeWeather and Forecasting:;1999:;volume( 014 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record