Show simple item record

contributor authorPotemra, James T.
contributor authorHautala, Susan L.
contributor authorSprintall, Janet
contributor authorPandoe, Wahyu
date accessioned2017-06-09T14:55:20Z
date available2017-06-09T14:55:20Z
date copyright2002/06/01
date issued2002
identifier issn0022-3670
identifier otherams-29708.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166965
description abstractRecent measurements from six bottom-mounted gauges are used with numerical model results to study the exchange of water between the Indonesian seas and the Indian Ocean via the Lesser Sunda Islands known collectively as Nusa Tengarra. The observations are approximately three years in length, from late 1995 to early 1999, and include measurements of bottom pressure, temperature, and salinity. The locations of the gauges are at the boundaries of three straits connecting the southern Indonesian seas with the eastern Indian Ocean: the Lombok Strait, the Ombai Strait, and the Timor Passage. The magnitude of intraseasonal variations in the pressure data dominates over that of the seasonal cycle. Intraseasonal variability appears most frequently and largest in magnitude at the westernmost strait (Lombok) and decreases along the coastline to the Timor Passage. Comparison to wind data shows these intraseasonal variations to be due to Kelvin wave activity in the Indian Ocean, forced by two distinct wind variations: semiannual monsoon reversals and Madden?Julian oscillation (MJO) activity. Sea level variations from both forcing mechanisms are then adjusted by local, alongshore winds. Longer-duration model results show the observation period (1996 through early 1999) to be a time of increased ENSO-related interannual variability and of suppressed annual cycle. MJO activity is also increased during this time. These factors explain the dominance of the higher frequency signals in the pressure data and the relative lack of a distinct annual cycle. An optimal fit of model sea level variations to model through-strait transport variations is used to estimate transport variability from the observed pressure records. At each strait the optimal fit is consistent with a cross-strait geostrophic balance for transport variations in the upper 250 m.
publisherAmerican Meteorological Society
titleInteraction between the Indonesian Seas and the Indian Ocean in Observations and Numerical Models
typeJournal Paper
journal volume32
journal issue6
journal titleJournal of Physical Oceanography
identifier doi10.1175/1520-0485(2002)032<1838:IBTISA>2.0.CO;2
journal fristpage1838
journal lastpage1854
treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record