Show simple item record

contributor authorShearman, R. Kipp
contributor authorBarth, John A.
contributor authorAllen, J. S.
contributor authorHaney, Robert L.
date accessioned2017-06-09T14:54:48Z
date available2017-06-09T14:54:48Z
date copyright2000/11/01
date issued2000
identifier issn0022-3670
identifier otherams-29526.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166763
description abstractSeveral diagnoses of three-dimensional circulation, using density and velocity data from a high-resolution, upper-ocean SeaSoar and acoustic Doppler current profiler (ADCP) survey of a cyclonic jet meander and adjacent cyclonic eddy containing high Rossby number flow, are compared. The Q-vector form of the quasigeostrophic omega equation, two omega equations derived from iterated geostrophic intermediate models, an omega equation derived from the balance equations, and a vertical velocity diagnostic using a primitive equation model in conjunction with digital filtering are used to diagnose vertical and horizontal velocity fields. The results demonstrate the importance of the gradient wind balance in flow with strong curvature (high Rossby number). Horizontal velocities diagnosed from the intermediate models (the iterated geostrophic models and the balance equations), which include dynamics between those of quasigeostrophy and the primitive equations, are significantly reduced (enhanced) in comparison with the geostrophic velocities in regions of strong cyclonic (anticyclonic) curvature, consistent with gradient wind balance. The intermediate model relative vorticity fields are functionally related to the geostrophic relative vorticity field; anticyclonic vorticity is enhanced and cyclonic vorticity is reduced. The iterated geostrophic, balance equation and quasigeostrophic vertical velocity fields are similar in spatial pattern and scale, but the iterated geostrophic (and, to a lesser degree, the balance equation) vertical velocity is reduced in amplitude compared with the quasigeostrophic vertical velocity. This reduction is consistent with gradient wind balance, and is due to a reduction in the forcing of the omega equation through the geostrophic advection of ageostrophic relative vorticity. The vertical velocity diagnosed using a primitive equation model and a digital filtering technique also exhibits reduced magnitude in comparison with the quasigeostrophic field. A method to diagnose the gradient wind from a given dynamic height field has been developed. This technique is useful for the analysis of horizontal velocity in the presence of strong flow curvature. Observations of the nondivergent ageostrophic velocity field measured by the ADCP compare closely with the diagnosed gradient wind ageostrophic velocity.
publisherAmerican Meteorological Society
titleDiagnosis of the Three-Dimensional Circulation in Mesoscale Features with Large Rossby Number
typeJournal Paper
journal volume30
journal issue11
journal titleJournal of Physical Oceanography
identifier doi10.1175/1520-0485(2001)031<2687:DOTTDC>2.0.CO;2
journal fristpage2687
journal lastpage2709
treeJournal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record