Show simple item record

contributor authorViúdez, Álvaro
contributor authorHaney, Robert L.
contributor authorAllen, John T.
date accessioned2017-06-09T14:53:54Z
date available2017-06-09T14:53:54Z
date copyright2000/03/01
date issued2000
identifier issn0022-3670
identifier otherams-29209.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166411
description abstractHorizontal current and density data fields are analyzed in order to validate, from an experimental point of view, the contribution of the advective and Coriolis accelerations and the hydrostatic pressure gradient term to the balance of horizontal momentum. The relative importance of the vertical advection of horizontal velocity in this balance is estimated by solving the quasigeostrophic (QG) omega equation. The analysis of the balance of horizontal momentum is carried out using data from three consecutive high-resolution samplings of the Atlantic jet (AJ) and western Alboran gyre (WAG) on the eastern side of the Strait of Gibraltar. The horizontal velocity reached maximum values of 1.30 m s?1 in the AJ at the surface. The ageostrophic velocity field reaches maximum absolute values of 30 cm s?1 at the surface, thus confirming the supergeostrophic nature of the AJ. At the surface the pressure gradient term reaches absolute values of 8?10 (?10?5 m s?2), the Coriolis acceleration 10?12 (?10?5 m s?2), and the advective horizontal acceleration 3 ? 10?5 m s?2. The vertical advection of horizontal velocity by the QG vertical velocity at 100 m is one order of magnitude smaller [O(10?6 m s?2)]. The geostrophic imbalance (difference between the pressure gradient term and the Coriolis acceleration) reaches 5 ? 10?5 m s?2 at the surface. The gradient imbalance (defined as the difference between the pressure gradient term and the Coriolis plus advective accelerations) is smaller than the geostrophic imbalance (being of order 2.5 ? 10?5 m s?2) making gradient balance the best estimate of the balance of horizontal momentum given the characteristics (synopticity and experimental errors) of the analyzed dataset. The gradient imbalance is not uniform in the horizontal but rather is larger in the AJ than in the WAG. From this result it is inferred that the AJ current experiences larger variations (larger local acceleration) than the WAG current.
publisherAmerican Meteorological Society
titleA Study of the Balance of Horizontal Momentum in a Vertical Shearing Current
typeJournal Paper
journal volume30
journal issue3
journal titleJournal of Physical Oceanography
identifier doi10.1175/1520-0485(2000)030<0572:ASOTBO>2.0.CO;2
journal fristpage572
journal lastpage589
treeJournal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record