Show simple item record

contributor authorTanaka, H. L.
contributor authorTokinaga, Hiroki
date accessioned2017-06-09T14:37:21Z
date available2017-06-09T14:37:21Z
date copyright2002/01/01
date issued2002
identifier issn0022-4928
identifier otherams-23011.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159526
description abstractIn this study, baroclinic instability of the northern winter atmosphere is investigated in the context of the dynamical interpretation of the Arctic oscillation. The unstable solutions, obtained by a method of 3D normal mode expansion, are compared for observed zonal basic states with strong and weak polar vortices in reference to the Arctic oscillation index. As a result of the eigenvalue problem of the linear stability analysis, a characteristic unstable solution is obtained that dominates in high latitudes when the polar vortex is strong. The mode is called a monopole Charney mode M1, which is similar to an ordinary Charney mode MC in midlatitudes. In order to understand the origin of the M1 mode, a hypothetical zonal basic state that has only the polar jet with no subtropical jet is analyzed. It is found that the M1 mode in high latitudes is excited by the baroclinicity associated with the polar vortex. The M1 mode in high latitudes is dynamically the same Charney mode as MC but is excited by the baroclinicity of the polar jet instead of the subtropical jet. As the MC mode intensifies the subtropical jet by the eddy momentum transfer, the M1 mode transfers eddy momentum to high latitudes to intensify the polar jet. Since M1 mode appears during the strong polar jet and feeds the westerly momentum to the polar jet, there is a positive feedback between the M1 mode and the polar vortex. This positive feedback would produce a persistent strong polar jet, which may in tern result in the occurrence of the annular mode of the Arctic oscillation.
publisherAmerican Meteorological Society
titleBaroclinic Instability in High Latitudes Induced by Polar Vortex: A Connection to the Arctic Oscillation
typeJournal Paper
journal volume59
journal issue1
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/1520-0469(2002)059<0069:BIIHLI>2.0.CO;2
journal fristpage69
journal lastpage82
treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record