Show simple item record

contributor authorSobel, A. H.
contributor authorPlumb, R. A.
contributor authorWaugh, D. W.
date accessioned2017-06-09T14:34:40Z
date available2017-06-09T14:34:40Z
date copyright1997/09/01
date issued1997
identifier issn0022-4928
identifier otherams-22048.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158455
description abstractExisting quantitative calculations of material transport across the stratospheric polar vortex edge are difficult to interpret. This is because what is actually calculated has not been clearly shown to be irreversible transport, because of ambiguities inherent in defining the vortex edge, and (relatedly) because the uncertainties in the various sorts of calculations have not been quantified. The authors discuss some of the conceptual and technical difficulties involved in such calculations. These typically use a tracer coordinate, so that an air parcel?s ?position? is defined as a function of some tracer that it carries. Also examined is the sensitivity to noise of a method that has been used in several prior studies, which the authors call the ?contour crossing? method. When contour crossing is implemented with no explicit threshold to discriminate noise from signal, a realistic amount of noise in the tracer data can cause apparent transports across the vortex edge in the range of ten percent to several tens of percent of the vortex area per month, even if the true transport is zero. Moreover, contour crossing does not discriminate between dynamically driven transport and that due to large-scale nonconservative effects acting upon the tracer used to define the coordinate. The authors introduce a new method, which is called the ?local gradient reversal? method, for estimating the dynamically driven component of the transport. This method is conceptually somewhat similar to contour surgery but applies to gridded fields rather than material contours. Like contour crossing, it can thus be used in conjunction with the reverse domain filling advection technique, while contour surgery is used with contour advection or contour dynamics. Local gradient reversal is shown to be less sensitive to noise than contour crossing.
publisherAmerican Meteorological Society
titleMethods of Calculating Transport across the Polar Vortex Edge
typeJournal Paper
journal volume54
journal issue18
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/1520-0469(1997)054<2241:MOCTAT>2.0.CO;2
journal fristpage2241
journal lastpage2260
treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 018
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record