Show simple item record

contributor authorIoannou, Petros J.
date accessioned2017-06-09T14:32:56Z
date available2017-06-09T14:32:56Z
date copyright1995/04/01
date issued1995
identifier issn0022-4928
identifier otherams-21428.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157766
description abstractRecently, a new theoretical and conceptual model of quasigeostrophic turbulence has been advanced in which eddy variance is regarded as being maintained by transient growth of perturbations arising from sources including the nonlinear interactions among the eddies, but crucially without a direct contribution of unstable modal growth to the maintenance of variance. This theory is based on the finding that stochastic forcing of the subcritical atmospheric flow supports variance arising from induced transfer of energy from the background flow to the disturbance field that substantially exceeds the variance expected from the decay rate of the associated normal modes in an equivalent normal system. Herein the authors prove that such amplification of variance is a general property of the stochastic dynamics of systems governed by nonnormal evolution operators and that consequently the response of the atmosphere to unbiased forcing is always underestimated when consideration is limited to the response of the system's individual normal modes to stochastic excitation.
publisherAmerican Meteorological Society
titleNonnormality Increases Variance
typeJournal Paper
journal volume52
journal issue8
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/1520-0469(1995)052<1155:NIV>2.0.CO;2
journal fristpage1155
journal lastpage1158
treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record