Show simple item record

contributor authorBerbery, Ernesto H.
contributor authorNogués-Paegle, Julia
contributor authorHorel, John D.
date accessioned2017-06-09T14:30:41Z
date available2017-06-09T14:30:41Z
date copyright1992/01/01
date issued1992
identifier issn0022-4928
identifier otherams-20647.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156898
description abstractThe dynamical basis of intraseasonal oscillations of the Southern Hemisphere summer and winter seasons is studied with a combination of observed diagnostics and simplified prognostic models. High-frequency oscillations, zonal mean variations, and seasonal and interannual variabilities are removed from the six-year dataset in an effort to reduce the effect of high-frequency dynamical instabilities and long-period forced fluctuations. The diagnoses focus upon those processes that have most frequently been explained in terms of Rossby-wave propagation through atmospheres with variable refractive indices. It is useful to study both winter and summer seasons simultaneously because of the large changes in the seasonally averaged state and large consequent changes in atmospheric waveguides between these seasons. A nonlinear shallow-water model slowly relaxed toward the time-averaged winter and summer observed mean fields is used to describe the characteristics of wave propagation in a horizontally varying basic state. Perturbations are introduced in four different regions corresponding to points where observed atmospheric teleconnectivities are relatively large, and the signal propagation is analyzed using averaging procedures similar to those employed for the observational study. Furthermore, differences between stationary and nonstationary patterns are also discussed. The four general regions selected for the observational study are Australia, New Zealand, South America, and the Atlantic Ocean. Differences from winter to summer are related to concomitant changes of the background latitudinal gradient of absolute vorticity. During winter and summer meridional propagation is toward the tropics. Winter wave patterns have mainly zonal paths and show a slow phase velocity on the order of 3 m s?1, while during summer, patterns tend to be geographically fixed. During winter, regions of imaginary refractive index flank the subtropical and polar jet streams. These jet streams seem to act as waveguides for disturbances emanating from the southern Indian Ocean and western Australia, where two wave trains exist. Wave activity flux vectors suggest that these disturbances originate in the subtropical southern Indian Ocean and that equatorward propagation prevails at the exit region of the subpolar jet stream and over South America and the Atlantic Ocean. During summer, observed wave patterns tend to have a more meridional component, again in agreement with the background latitudinal gradient of absolute vorticity.
publisherAmerican Meteorological Society
titleWavelike Southern Hemisphere Extratropical Teleconnections
typeJournal Paper
journal volume49
journal issue2
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/1520-0469(1992)049<0155:WSHET>2.0.CO;2
journal fristpage155
journal lastpage177
treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record