Show simple item record

contributor authorStamnes, Knut
contributor authorSwanson, Roy A.
date accessioned2017-06-09T14:22:07Z
date available2017-06-09T14:22:07Z
date copyright1981/02/01
date issued1981
identifier issn0022-4928
identifier otherams-18088.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154054
description abstractThe difficulties inherent in the conventional numerical implementation of the discrete ordinate method (following Chandrasekhar's prescription) for solving the radiative transfer equation are discussed. A matrix formulation is developed to overcome these difficulties, and it is specifically shown that the order of the algebraic eigenvalue problem can be reduced by a factor of 2. An expression for the source function is derived and used to obtain angular distributions. By appealing to the reciprocity principle, it is shown that substantial computational shortcuts are possible if only integrated quantities such as albedo and transmissivity are required. Comparison of fluxes calculated by the present approach with those obtained by other methods shows that low-order discrete ordinate approximations yield very accurate results. Thus, the present approach offers an efficient and reliable computational scheme that lends itself readily to the solution of a variety of radiative transfer problems in realistic planetary atmospheres.
publisherAmerican Meteorological Society
titleA New Look at the Discrete Ordinate Method for Radiative Transfer Calculations in Anisotropically Scattering Atmospheres
typeJournal Paper
journal volume38
journal issue2
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/1520-0469(1981)038<0387:ANLATD>2.0.CO;2
journal fristpage387
journal lastpage399
treeJournal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record