Show simple item record

contributor authorReynolds, R. Michael
contributor authorMiller, Mark A.
contributor authorBartholomew, Mary J.
date accessioned2017-06-09T14:22:06Z
date available2017-06-09T14:22:06Z
date copyright2001/02/01
date issued2001
identifier issn0739-0572
identifier otherams-1808.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154045
description abstractThis paper describes the design, calibration, and deployment of a fast-rotating shadowband radiometer (FRSR) that accurately decomposes downward shortwave (solar) irradiance into direct-beam and diffuse components from a moving platform, such as a ship on the ocean. The FRSR has seven channels, one broad-band silicone detector, and six 10-nm-wide channels at 415, 500, 610, 660, 860, and 940 nm. The shadowband technique produces estimates of the direct-beam normal irradiance, the diffuse irradiance (sky component), and the total irradiance. The direct-beam normal irradiances produce time series of aerosol optical thickness. A proven ability to derive meaningful at-sea estimates of aerosol optical depth from an economical, automated, and reliable instrument opens the way to a distributed network of such measurements from volunteer observing ships in all areas of the World Ocean. The processing algorithms are key to the instrument?s ability to derive direct-normal beam irradiance without gimbals and a gyro-stabilized table. At-sea Langley plots were produced during the Aerosols99 cruise of the R/V Ronald H. Brown from Norfolk, Virginia, to Cape Town, South Africa. A Langley calibration of the instrument at the Mauna Loa Observatory confirmed prior calibrations and demonstrated that the calibration was stable over the duration of the cruise. The standard deviation in all plots was of the order 2% for all channels.
publisherAmerican Meteorological Society
titleDesign, Operation, and Calibration of a Shipboard Fast-Rotating Shadowband Spectral Radiometer
typeJournal Paper
journal volume18
journal issue2
journal titleJournal of Atmospheric and Oceanic Technology
identifier doi10.1175/1520-0426(2001)018<0200:DOACOA>2.0.CO;2
journal fristpage200
journal lastpage214
treeJournal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record