Show simple item record

contributor authorChevallier, F.
contributor authorChéruy, F.
contributor authorScott, N. A.
contributor authorChédin, A.
date accessioned2017-06-09T14:06:45Z
date available2017-06-09T14:06:45Z
date copyright1998/11/01
date issued1998
identifier issn0894-8763
identifier otherams-12647.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148009
description abstractThe authors have investigated the possibility of elaborating a new generation of radiative transfer models for climate studies based on the neural network technique. The authors show that their neural network?based model, NeuroFlux, can be used successfully for accurately deriving the longwave radiative budget from the top of the atmosphere to the surface. The reliable sampling of the earth?s atmospheric situations in the new version of the TIGR (Thermodynamic Initial Guess Retrieval) dataset, developed at the Laboratoire de Météorologie Dynamique, allows for an efficient learning of the neural networks. Two radiative transfer models are applied to the computation of the radiative part of the dataset: a line-by-line model and a band model. These results have been used to infer the parameters of two neural network?based radiative transfer codes. Both of them achieve an accuracy comparable to, if not better than, the current general circulation model radiative transfer codes, and they are much faster. The dramatic saving of computing time based on the neural network technique (22 times faster compared with the band model), 106 times faster compared with the line-by-line model, allows for an improved estimation of the longwave radiative properties of the atmosphere in general circulation model simulations.
publisherAmerican Meteorological Society
titleA Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget
typeJournal Paper
journal volume37
journal issue11
journal titleJournal of Applied Meteorology
identifier doi10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2
journal fristpage1385
journal lastpage1397
treeJournal of Applied Meteorology:;1998:;volume( 037 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record