Show simple item record

contributor authorSteven Chien
contributor authorPaul Schonfeld
date accessioned2017-05-08T21:04:01Z
date available2017-05-08T21:04:01Z
date copyrightApril 2001
date issued2001
identifier other%28asce%290733-947x%282001%29127%3A2%28124%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/37326
description abstractHighway pavement maintenance is very expensive not only in terms of costs to the responsible agencies but also in terms of disruptive delays to users. Construction and maintenance activities on four-lane highways (with two lanes in each direction) often require the closure of one of the two travel lanes. Longer work zones tend to increase the user delay costs. Maintenance work can be performed more efficiently, i.e., with fewer repeated setups, in longer zones. A relatively simple mathematical model is developed to optimize work zone lengths on four-lane highways where one lane in one direction at a time is closed. The objective is to minimize the total cost, including the agency cost, the accident cost, and the user delay cost. The optimized variable (e.g., work zone length) and the sensitivity results generated from a numerical example are presented in this study. With user-specified input parameters, this model can be used to optimize work zones on four-lane highways for a wide variety of circumstances.
publisherAmerican Society of Civil Engineers
titleOptimal Work Zone Lengths for Four-Lane Highways
typeJournal Paper
journal volume127
journal issue2
journal titleJournal of Transportation Engineering, Part A: Systems
identifier doi10.1061/(ASCE)0733-947X(2001)127:2(124)
treeJournal of Transportation Engineering, Part A: Systems:;2001:;Volume ( 127 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record