Show simple item record

contributor authorPoul V. Lade
date accessioned2017-05-08T20:36:14Z
date available2017-05-08T20:36:14Z
date copyrightJanuary 1992
date issued1992
identifier other%28asce%290733-9410%281992%29118%3A1%2851%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/20912
description abstractSoils that exhibit nonassociated flow may, according to stability postulates by Drucker and by Hill, become unstable when exposed to certain stress paths inside the failure surface. Series of conventional triaxial tests on fully saturated and on partly saturated specimens were performed under drained and undrained conditions to study the regions of stable and unstable behavior. For specimens that compress and have degrees of saturation higher than critical, undrained conditions lead to effective stress paths directed within the region of potential instability, and instability was observed provided the yield surface opens up in the outward direction of the hydrostatic axis. Thus, instability occurs inside the failure surface. Instability is not synonymous with failure, although both may lead to catastrophic events. The location of the instability line is discussed. Examples of a shallow submarine slope and a nearly fully saturated steeper slope representing a tailings dam, which both should remain stable according to conventional stability analyses, are presented to show that they could become unstable due to small disturbances and proceed to fail catastrophically.
publisherAmerican Society of Civil Engineers
titleStatic Instability and Liquefaction of Loose Fine Sandy Slopes
typeJournal Paper
journal volume118
journal issue1
journal titleJournal of Geotechnical Engineering
identifier doi10.1061/(ASCE)0733-9410(1992)118:1(51)
treeJournal of Geotechnical Engineering:;1992:;Volume ( 118 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record